Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomed Res Int ; 2021: 5546790, 2021.
Article in English | MEDLINE | ID: covidwho-1405239

ABSTRACT

The spread of COVID-19 worldwide continues despite multidimensional efforts to curtail its spread and provide treatment. Efforts to contain the COVID-19 pandemic have triggered partial or full lockdowns across the globe. This paper presents a novel framework that intelligently combines machine learning models and the Internet of Things (IoT) technology specifically to combat COVID-19 in smart cities. The purpose of the study is to promote the interoperability of machine learning algorithms with IoT technology by interacting with a population and its environment to curtail the COVID-19 pandemic. Furthermore, the study also investigates and discusses some solution frameworks, which can generate, capture, store, and analyze data using machine learning algorithms. These algorithms can detect, prevent, and trace the spread of COVID-19 and provide a better understanding of the disease in smart cities. Similarly, the study outlined case studies on the application of machine learning to help fight against COVID-19 in hospitals worldwide. The framework proposed in the study is a comprehensive presentation on the major components needed to integrate the machine learning approach with other AI-based solutions. Finally, the machine learning framework presented in this study has the potential to help national healthcare systems in curtailing the COVID-19 pandemic in smart cities. In addition, the proposed framework is poised as a pointer for generating research interests that would yield outcomes capable of been integrated to form an improved framework.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/methods , Machine Learning , Algorithms , Artificial Intelligence , COVID-19/prevention & control , COVID-19/transmission , Cities/epidemiology , Contact Tracing/methods , Delivery of Health Care , Humans , Internet of Things , Pandemics , SARS-CoV-2/pathogenicity
2.
Inform Med Unlocked ; 20: 100395, 2020.
Article in English | MEDLINE | ID: covidwho-664982

ABSTRACT

Coronavirus, also known as COVID-19, has been declared a pandemic by the World Health Organization (WHO). At the time of conducting this study, it had recorded over 11,301,850 confirmed cases while more than 531,806 have died due to it, with these figures rising daily across the globe. The burden of this highly contagious respiratory disease is that it presents itself in both symptomatic and asymptomatic patterns in those already infected, thereby leading to an exponential rise in the number of contractions of the disease and fatalities. It is, therefore, crucial to expedite the process of early detection and diagnosis of the disease across the world. The case-based reasoning (CBR) model is a compelling paradigm that allows for the utilization of case-specific knowledge previously experienced, concrete problem situations or specific patient cases for solving new cases. This study, therefore, aims to leverage the very rich database of cases of COVID-19 to solve new cases. The approach adopted in this study employs the use of an improved CBR model for state-of-the-art reasoning task in the classification of suspected cases of COVID-19. The CBR model leverages on a novel feature selection and the semantic-based mathematical model proposed in this study for case similarity computation. An initial population of the archive was achieved from 71 (67 adults and 4 pediatrics) cases obtained from the Italian Society of Medical and Interventional Radiology (SIRM) repository. Results obtained revealed that the proposed approach in this study successfully classified suspected cases into their categories with an accuracy of 94.54%. The study found that the proposed model can support physicians to easily diagnose suspected cases of COVID-19 based on their medical records without subjecting the specimen to laboratory tests. As a result, there will be a global minimization of contagion rate occasioned by slow testing and in addition, reduced false-positive rates of diagnosed cases as observed in some parts of the globe.

SELECTION OF CITATIONS
SEARCH DETAIL